Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
npj Urban Sustainability ; 3(1):3, 2023.
Article in English | ProQuest Central | ID: covidwho-2288521

ABSTRACT

Currently, the global situation of COVID-19 is aggravating, pressingly calling for efficient control and prevention measures. Understanding the spreading pattern of COVID-19 has been widely recognized as a vital step for implementing non-pharmaceutical measures. Previous studies explained the differences in contagion rates due to the urban socio-political measures, while fine-grained geographic urban spreading pattern still remains an open issue. Here, we fill this gap by leveraging the trajectory data of 197,808 smartphone users (including 17,808 anonymous confirmed cases) in nine cities in China. We find a general spreading pattern in all cities: the spatial distribution of confirmed cases follows a power-law-like model and the spreading centroid human mobility is time-invariant. Moreover, we reveal that long average traveling distance results in a high growth rate of spreading radius and wide spatial diffusion of confirmed cases in the fine-grained geographic model. With such insight, we adopt the Kendall model to simulate the urban spreading of COVID-19 which can well fit the real spreading process. Our results unveil the underlying mechanism behind the spatial-temporal urban evolution of COVID-19, and can be used to evaluate the performance of mobility restriction policies implemented by many governments and to estimate the evolving spreading situation of COVID-19.

2.
npj Urban Sustainability ; 3(1):3, 2023.
Article in English | ProQuest Central | ID: covidwho-2221878

ABSTRACT

Currently, the global situation of COVID-19 is aggravating, pressingly calling for efficient control and prevention measures. Understanding the spreading pattern of COVID-19 has been widely recognized as a vital step for implementing non-pharmaceutical measures. Previous studies explained the differences in contagion rates due to the urban socio-political measures, while fine-grained geographic urban spreading pattern still remains an open issue. Here, we fill this gap by leveraging the trajectory data of 197,808 smartphone users (including 17,808 anonymous confirmed cases) in nine cities in China. We find a general spreading pattern in all cities: the spatial distribution of confirmed cases follows a power-law-like model and the spreading centroid human mobility is time-invariant. Moreover, we reveal that long average traveling distance results in a high growth rate of spreading radius and wide spatial diffusion of confirmed cases in the fine-grained geographic model. With such insight, we adopt the Kendall model to simulate the urban spreading of COVID-19 which can well fit the real spreading process. Our results unveil the underlying mechanism behind the spatial-temporal urban evolution of COVID-19, and can be used to evaluate the performance of mobility restriction policies implemented by many governments and to estimate the evolving spreading situation of COVID-19.

3.
Physica A ; 604: 127889, 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-1914904

ABSTRACT

Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, the international medical device trade has received extensive attention. To maintain the domestic supply of medical devices, some countries have sought multilateral trade cooperation or simply implemented export restrictions, which has exacerbated the instability and fragility of the global medical device market. It is crucial for government policymakers to identify the most influential countries in the international medical device trade and nip exports in the bud. However, few efforts have been made in previous studies to explore various countries' influence on the international medical device trade in light of their intricate trade relationships. To fill these research gaps, this study constructs a global medical device trade network (GMDTN) and explores the criticality of various countries from a network-based perspective. The evolution patterns and geographical distribution of influence among countries in the GMDTN are revealed. Details on the ways in which the influence of some crucial countries has formed are provided. The results show that the global medical device trade market is export oriented. The formation of some countries' strong influence may be due to their large number of trading partners or the deep dependence of some of those trading partners on that country (namely, breadth- or depth-based patterns). It is worth noting that the US has a dominant position in the international medical device trade in terms of both breadth and depth. In addition, some countries play a critical role as intermediate points in the influence formation process of other countries, although these countries are not critical direct trading partners. The findings of this study provide implications for policymakers seeking to understand the influence of countries on the international medical device trade and to proactively prepare responses to unexpected changes in this trade.

4.
Advanced Theory and Simulations ; 5(4):2270010, 2022.
Article in English | Wiley | ID: covidwho-1782559

ABSTRACT

Impacts of Export Restrictions on the Global Personal Protective Equipment Trade Network During COVID-19 In article number 2100352, Ye, Zhang and co-workers investigate the effect of personal protective equipment (PPE) shortages on COVID-19 contagion patterns. Integrating a metapopulation model and a threshold model, it is found that export restrictions on PPE cause shortage contagion on the global PPE trade network to transmit even faster than the disease contagion on global mobility network.

5.
Adv Theory Simul ; 5(4): 2100352, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1557820

ABSTRACT

The COVID-19 pandemic has caused a dramatic surge in demand for personal protective equipment (PPE) worldwide. Many countries have imposed export restrictions on PPE to ensure the sufficient domestic supply. The surging demand and export restrictions cause shortage contagions on the global PPE trade network. Here, an integrated network model is developed, which integrates a metapopulation model and a threshold model, to investigate the shortage contagion patterns. The metapopulation model captures disease contagion across countries. The threshold model captures the shortage contagion on the global PPE trade network. Due to the Pareto distribution in global exports, the shortage contagion pattern is mainly determined by the export restriction policies of the top exporters. Export restrictions exacerbate the shortages of PPE and cause the shortage contagion to transmit even faster than the disease contagion. To some extent, export restrictions can provide benefits for self-sufficient countries, at the sacrifice of immediate economic shocks at not-self-sufficient countries. With export restrictions, a large amount of PPE is hoarded instead of being distributed to where it is most needed, particularly at the early stage. Cooperation between countries plays an essential role in preventing global shortages of PPE regardless of the production level. Except for promoting global cooperation, governments and international organizations should take actions to reduce supply chain barriers and work together to increase global PPE production.

6.
Physica A ; 559: 125086, 2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-712776
7.
Risk Anal ; 41(5): 814-830, 2021 05.
Article in English | MEDLINE | ID: covidwho-1064190

ABSTRACT

Either in the form of nature's wrath or a pandemic, catastrophes cause major destructions in societies, thus requiring policy and decisionmakers to take urgent action by evaluating a host of interdependent parameters, and possible scenarios. The primary purpose of this article is to propose a novel risk-based, decision-making methodology capable of unveiling causal relationships between pairs of variables. Motivated by the ongoing global emergency of the coronavirus pandemic, the article elaborates on this powerful quantitative framework drawing on data from the United States at the county level aiming at assisting policy and decision makers in taking timely action amid this emergency. This methodology offers a basis for identifying potential scenarios and consequences of the ongoing 2020 pandemic by drawing on weather variables to examine the causal impact of changing weather on the trend of daily coronavirus cases.


Subject(s)
Causality , Decision Making , Humans , Pandemics , Risk Factors , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL